
Spin waves in superlattices. IV. The exchange-dominated region

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys.: Condens. Matter 4 4849

(http://iopscience.iop.org/0953-8984/4/20/012)

Download details:

IP Address: 171.66.16.159

The article was downloaded on 12/05/2010 at 12:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/4/20
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys.: Condens. Matter 4 (1992) 4849-4855. Printed in the UK 

Spin waves in superlattices: IV. The exchange- 
dominated region 
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Received 2August 1991 

Abstract. Bulk and surface exchange-dominated spin waves in semi-iniinite superlattices 
are considered theoretically within the transfer matrix formalism. The in- and inter-plane 
exchange constants for two atomic planes at each interface are assumed to differ from 
appropriate bulk values. The spin-wavespectrum has beencalculated numerically forsuper- 
lattices composed of two different ferromagnetic materials. Considerations are restricted to 
the case of parallel alignment of the film magnetizations. 

1. Intrduction 

Linear magnetic excitations in layered structures have been analysed theoretically in 
many papers (Barn& (1992) and references therein). Inmost of them the considerations 
were restricted to the long-wavelength range which is usually accessible in experiments. 
Comparatively less attention has been paid to the short-wavelength region, where the 
exchange coupling is dominant and the dipolar interactions are negligible. Several 
different techniques have been developed for theoretical treatment of the exchange- 
dominatedmodesinlayered structures, including the Green functionmethod (Dobrzyn- 
ski et nl1986), the transfer matrix formalism (Albuquerque et a1 1986, BamaS 1988a, 
1992) and the interface rescaling technique (Puszkarski 1988, Puszkarski and Dobrzynski 
1989). In this paper we shall apply the transfer matrix method and shall make use of 
appropriate formulae derived previously (BarnaS 1988a). Within this formalism, one 
expresses appropriate dispersion equations in terms of the transfer matrix and its eig- 
envalues. Bulk modes then correspond to eigenvalues of the form exp(*iQL), where 
Q is real and -n/L 6 Q s n/L with L being the thickness of the elementary unit. The 
surface modes, on the other hand, can propagate only in ,those regions where the 
eigenvalues of the transfer matrix are of the form exp(*pL) with @ = K or p = K + 
in/L (for real K). In the first paper of this series (BarnaS 1988a) some general dispersion 
equations for bulk and surface modes in semi-infinite structures were derived for the 
exchange, magnetostatic and retardation limits. These equations were subsequently 
applied to thespectrumofmagnetostaticmodes (BarnaS 1988b) and magneticpolaritons 
(BarnaS 1990) in ferromagnetic and antiferromagnetic structures. The aim of this paper 
is to apply them to spin-wave spectrum of semi-infinite superlattice in the exchange- 
dominated region. 

The exchange-dominated part of the spin-wave spectrum of infinite ferromagnetic 
superlattices was considered by Albuquerque et a1 (1986). The semi-infinite case was 
discussed by Dobrzynski el a1 (1986), who derived appropriate dispersion equations for 
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both bulk and surface modes by applying the Green function technique. In both cases 
the in-plane exchange constants for two atomic planes at each interface were the same 
as the corresponding bulk values. Here, we consider a more general case, when those 
constants differ from the bulk values. 

The explicit formulae for the relevant transfer matrix are given in section 2. Appro- 
priate dispersion equations for bulk and surface modes are presented in section 3. Some 
numerical results and final remarks are given in section 4. 

2. Transfer matrix 

Consider a simple-cubic superlattice with (100) interfaces and with the elementary unit 
composed of two different ferromagnetic films: one consisting of N1 and the other of N z  
atomic planes. For simplicity we assume the same lattice parameter a for both materials 
and restrict the exchange coupling to nearest neighbours. Suppose further that all films 
are magnetized in the film planes and along an external static magnetic field Ho. This 
assumption restricts our considerations to ferromagnetic coupling between the films or 
to antiferromagnetic coupling but with Ho strong enough to overcome the inter-layer 
coupling and to force the parallel alignment of the filmmagnetizations. Anisotropy fields 
will be neglected here. We assume additionally that the in-plane exchange parameters 
for the two atomic planes at each interface differ from the corresponding bulk values. 
In the following description we shall use the coordinate system with the axis z along the 
magnetic field (and also along the static magnetization) and with the axis x parallel to 
the superlattice direction. 

It is convenient to introduce dimensionless energy units according to the definition 

E = E/J(I)S(’). (1) 

I?, = H0/J(’)S(’) .  (2) 

Consequently, we define H0 as 

Following the general formulae derived previously (BarnaS 1988a) one finds the fol- 
lowing explicit expressions for the elements of the transfer matrix T: 

7-11 = {exp[i(NI - l ) k y ) ~ ] / [ 4 6 ~ ~ q ~  sin(kjf)ct) sin(ke)a)]} 
x {[a(@) + q E ’ )  + F($F(3I2 exp[-i(Nz - l)k$?)a] 

- [a(*) + qF(2)) + fi1)F(2)]z exp[i(N2 - l ) k y ) a ] }  

x {[6(F(:) + qP3) +F’:)F(3][6(F?) +qF?))+F(OF(I)] 

(34 
Tlz = {exp[-i(Nl + l ) k Y ) a ] / [ 4 6 * ~ q ~  sin(ke)a) sin(ky)a)]} 

x exp[ -i(N2 - l)k$?)a] - [6(@) + qF’,)) + fi;)F(?)] 
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q = S(Z)/S(') 

and F q )  and F?) are defined as 

F$) = 4A(&(') - 1) - 1 + exp(+ikv)a) 

F(2) = &q[4A(~f) - 1) - 1 + exp(+ik(:)a)] 

with 

0) - 01 0) 
Eli - JI IJ 
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(6) 

for j = 1,2. In the above equations, $1 and J(j) denote the spin number and bulk 
exchange constant for the jth material ( j  = 1,2), Jf) is the in-plane exchange parameter 
foraninterfaceatomicplanein thejthmaterialandJ('J)desnibesthe exchange coupling 
between the materials. The definitions (7a) and (76) differ from the corresponding ones 
introducedpreviously(Barna5 1988a) byafactorofJISl. Apart from this, asmallchange 
in the notation has been introduced. The parameters k($! and kp) are determined by the 
equations 

cos(ky)a) = 1 + 2A - &(E - g( l )@,+Bfig j  

COS(kp'a) = 1 + 2A - (1/2Eq)(E - g(2)&pBfia) 

A = 1 - a[cos(q,a) + cos(q,a)] 

( 9 4  

(96) 

where go3 is the Land6 factor for thejth material, and 

(10) 

with q, and qz being the components of the in-plane wavevector q.  
The transfer matrix T is a function of I?, qy, qz, k v )  and kp). For clarity of notation 

this dependence has not been written explicitly in the above equations. One can easily 
prove that the matrix T fulfils the condition det T = 1. Apart from this, one finds that T 
is invariant under the transformation kp) - - ky). One can also show that Tf, = Tzz if 
ky) is real, whereas TI1 = Tlj and T ,  = T& if either k v )  = iK or k v )  = IC + k, with 
real K. Similar relations hold also for T12 and TZl. 

The above formulae for the transfer matrix elements are valid for all E except those 
particular values at which IC?) or ky) is equal to 0 OT +n/a. These special values 
correspond to the edges of the bulk spin-wave bands in the constituting materials. If 

deriving equations (3a)-(3d) (BarnaS 1988a), is not applicable. In that case, however, 
there is another particular solution of the appropriate difference equation and one can 
use the following expansion: 

ku) I - - 0 or kt3 = f z / a ,  the expansion for spin-wave amplitudes, which was used when 

S.+(q)lO) = A ~ , j ( + l ) " - " - l ) N  +A, , , [~z  - (m - l)Nl(*l)n-('"-')N (11) 

where n(m) is the atomic plane (elementary unit) index, A:,i are constants and the 
upper (lower) sign corresponds to ky' = 0 (k f '  = +z)lI). Applying equation (11) 
together with appropriate boundary equations, one can derive the transfer matrix 
corresponding to the special values of E. Its explicit form, however, will not be given 
here. 
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3. Dispersion equations for bulk and surface modes 

The spectrum of bulk modes in superlattices under consideration is determined by the 
dispersion equation 

COS(QL) $(Tii f Tu) (12) 

where L = ( N I  t N2)n and Q is the wavevector component along the superlattice 
direction. For all E, except the particular values discussed above, the transfer matrix 
elements are given by equations (3a)-(34. The special cases have to be considered 
separately, as discussed in section 2. 

To find surface modes propagating in semi-infinite structures we shall apply the 
general formulae derived in a recent paper (Barn& 1988a). Following them one can 
write the dispersion equation for the surface modes in the form 

DIDz(T11 - Tu)  - D:7'2, + D$T,2 = 0 

D1(2) = T 1 2 [l - 4A(4 - l)] exp( ?ikr)a). 

(13) 

where D, and D2 are given by the expressions 

(14) 

The upper (lower) sign in the above expression corresponds to Dl ( D z )  and the par- 
ameter c i  is defined as 

E ;  = J ; / J ( ~ )  (15) 

where J ;  is the exchange integral between spins in the surface atomic plane, %hich 
usually differs from the corresponding value inside the structure. We have also assumed 
that the material corresponding to j = 1 is at the surface of the semi-infinite structure. 

of the 
dispersion equation (13) can be calculated from one of the formulae 

The decay parameter ps which corresponds to a particular solution J? = 

exp(-P,L) = Tll + T12(D2/Dl)le=c, (164 

or 

exp(-B,L) = Tu + T21(D1/&)Ie=br. 

The above expressions are equivalent in a general case. If, however, Dl = 0 at E = &, 
then equation (16b) is applicable. If D2 = 0 at f? = &, one can make use of equation 
(16a). Only those solutions for which 

lexp(-PJ)I < 1 (17) 

describe surface modes. One may say equivalently, that only solutions for which the 
condition Re(P,) > 0 is fulfilled correspond to surface modes. (There is an error in 
previous papers (BamaS 1988a, b), where the condition @, > 0 should read Re(&) > 0.) 
If Im(6,) = 0, the solutions are of the acousric type whereas, for lm(p,) = n/L, the 
modes are of the optic type. In a general case a surface mode of a superlattice i s  of the 



Spin waves in superlattices: N 

25- 

4853 

_ _ _ _ _ _ -  --&- Figure 1. Spectra of bulk (shaded regions cor- 
responding lo -n/L s Q s n/L) and surface 
(broken curves) exchange modes for q = 1, E = 2, z o  6 = 1.4, Ho = 0 ,  E ( ' )  = EO)  = 1, and E;  = 0.5, 0 05 10 15 
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Figure 2. Spectra of bulk modes versus the inter-layer exchange parameter 6 for q = 1, 
E = 2, A = 0.2, H = 0 and E") = Eo) = 1. 

II n 

ncoustic type if equivalent magnetic moments in adjacent elementary units precess in 
phase. If they precess in anti-phase, the modes are of the optic type. 

4. Numerical results 

The dispersion equations (12) and (13) for bulk and surface spin-wave modes are 
convenient for numerical calculations. As an example we shall apply them to super- 
lattices with the elementary unit consisting of N I  = 3 atomic planes of one material 
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Figure 3. Dependence of the spectra of bulk modes on the exchange parameter E,, at the 
interfaces: E! = 1, E = 2,6 = 1.4, 
A = 0.5and H o =  0. 

E;’ = E;’. The other parameters assumed here are 

( j  = 1) and NZ = 3 atomic planes of the other one ( j  = 2). The corresponding spin-wave 
spectrum isshownin figure 1,wherethe shaded regionslimited bythefullcurvesdescribe 
the subbands of bulk modes and the broken lines correspond to the surface modes, optic 
(0) and acoustic (A) as indicated. The spin-wave energy is plotted against the parameter 
A. As one could expect, there are six subbands of the bulk modes. (The uppermost band 
is very narrow for the parameters assumed in figure 1.) For a ‘weakened‘ exchange 
coupling at the surface-as assumed in figure L o n e  finds additionally two different 
surface branches of the acoustic type and one of the opric type. 

In figure 2 the spectrum of bulk modes is shown as a function of the para- 
meter 6, i.e. as a function of the exchange coupling between the two materials. For 
6 = O(J(t.2) = 0) thestructure isequivalent to astackof decoupledlayers. Consequently, 
the modes propagating in different films are also decoupled and each state of the stack 
is highly degenerate. The degeneracy, however, is lifted by a non-zero inter-layer 
coupling and a characteristic band structure develops from discrete energy levels. 

It is also interesting to analyse the influence of the in-plane exchange coupling J f )  at 
the interfaces on the spin-wave frequency. For bulk modes this dependence is shown in 
figure 3, where ~ 1 ’ )  = E$ = ell is assumed. As one can see, all bands shift upwards 
with increasing ep 

The method presented here is based on the transfer matrix T derived in the complex 
quasi-momentum representation. Another possibility is to use the transfer matrix in the 
‘site’ (atomic plane) representation (BarnaS 1992). Both methods give equivalent spin- 
wave spectra, as they should do. 

There are several techniques which can be used for experimental investigations of 
the spin-wave modes in layered structures. The most suitable are the Brillouin light 
scattering and spin-wave or ferromagnetic resonances. In some experimental con- 
figurations the dipolar coupling is negligible and the corresponding spectra can be 
interpreted within the approximation described above. 



Spin waves insuperlattices: N 4855 

Acknowledgment 

This work has been carried out partly under Research Grant 2 0294 91 01 

References 

Albuquerque E L, Fulco P, Samento E F and Tilley D R 1986 Solid Srare Commun. 58 41 
B a d J  1988aJ. Phys. C: SolidSrofePhys. 21 1021 - 1988bJ. Phys. C: SolidSrorePhys. 21 4097 - 19901. Phys.: Condem. Mutter2 7173 
- 1992 Phys. Rev. B at press 
Dobrzynski L, Djafari-Rouhani Band Puszkarski H 1986 Phys. Rev. B 33 3251 
Puszkarski H 1988Acra Phys. Pol. A 74 701 
Puszkarski H and Dobrzynski L 1989 Phys. Rev. B 39 1819 


